
http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:hyb3.5:hrte:sdk

Android

Outline

Android is a software stack for mobile devices and comprises middleware, operating system and core

applications.

Android SDK supports tools and APIs that are necessary for development of Android platform

application using the programming languages available for Java.

Concept

Refer to the following for the basic Android structure comprising Applications, Application

Framework, Libraries, Android Runtime and Linux Kernel.

Composition Description

Applications E-mail, SMS, Calendar, Map, Browser, Contact and other core applications.

Application Framework Application Frameworks that allow the resources used as required by Android.

Libraries Functions available for other applications

Android Runtime Core library intended for operating system

Linux Kernel Kernel information that administers Linux operating system

Description

Applications

Android OS has e-mail client, SMS, Calender, Map, Browser Contact and other core applications

itself. These applications are built based on Java Programming Language.

Application Framework

Android developer can access the framework API used, identical to the core application. These

architectures have been designed to allow re-use of component much easier. Meanwhile, the

applications may allow the external applications to use its own functions, and vise versa (subject to

security restrictions administered by framework). Such a mechanism makes feasible substitution of

components by users. At the bottom of the application you have the following sets of service and

system:

• A multitude of sets of expandable views for development of applications including, without limitation, list, grid,

text box, button and embeddable web browser.

• Content Provider that allows an application to access the data of other application (like contacts information) or

share its own data.

• Resource Manager that provides access to non-code resources such as localized strings, graphics and layout file.

• Notification Manager that allows applications to activate customized notification messages.

• Activity Manager that administers the lifecycle of application and navigation history of the general application

(back stack only).

Libraries

Android contains C/C++ Libraries used for a variety of Android-based system components. These

libraries are provided to the developers via Android Application Framework. See the following for a

handful of core libraries available:

• System C library : Standard System C Library derived out of BSD libc to fit the embedded Linux-based devices.

• Media Libraries : Structured based on PacketVideo's OpenCORE. Compatible with still images such as MPEG4,

H.264, MP3, AAC, AMR, JPG and PNG for audial and visual recording and play.

• Surface Manager: Provides access managements for display sub-systems and 2D and 3D graphic layers used by a

variety of applications.

• LibWebCore : A state-of-the-art web browser engine compatible with both Android browser and embeddable web-

view.

• SGL : Very basis of 2D graphics engine.

• 3D Libraries : Implemented based on OpenGL ES 1.0 API. Users Hardware's 3D Accelerator or 3D Software

Rasterizer.

• FreeType - Rendering Engines for Bit Map and Vector Font Rendering.

• SQLite - A powerful and light relational database engine available for all sorts of applications.

Android Runtime

Android's core library contains the greatest part what is available in Java Programming Language.

Android applications are designed to have its own instances against Dalvik virtual machine and

executed within its own process. Meanwhile, Dalvik is designed to execute a variety of virtual

machines within a single device. Dalvik virtual machine executes the unique Dalvik Executable

format (.dex) designed to use the memory to the minimal extent. The virtual machine is registered to

be compiledby Java Language Compiler and executes the class converted into .dex format thanks to

“dx” contained in SDK. Dalvik virtual machine is thus dependent on the Linux kernel for the basic

functions such as threading and low-level memory management.

Linux Kernel

Android is dependent on Linux 2.6 (or, for Android 4.0 or better, Linux 3.x) for core system services

such as security, memory administration, process administration, network stack and driver model.

Meanwhile, Linux Kernel also serves as the abstract layer between the hardware and Android

Platform Stack.

References

Android platform : http://developer.android.com

iOS

Outline

Concept

Layer Description

iOS Kernel iOS Kernel : Mach-based. Same with Mac OS X.

Core OS and Core Service

s Layer
Basic iOS Interfaces. Data types, Bonjour and Network Socket.

Media Layer
2D/3D, audio, video and other base functions. OpenGL ES, Quartz Core Audio and Co

re Animation.

Cocoa Touch Layer
Objective-C-based. Offers the fundamental infrastructure to generate application program

 using various framework.

Description

Applications

iOS has e-mail client, SMS, Calender, Map, Browser Contact and other core applications itself. These

applications are built based on Objective-C 2.0 Programming Language.

Application Framework

iOS architecture resembles Mac OS X, in that it mediates between underlying hardware and on-screen

application. An iOS application does not communicate with hardware directly but by way of Well-

defined System Interface that protects application from hardware changes, referred to as “abstraction”

that allows the application compatible with multiple devices.

It is thus advised that the developer uses the frameworks of superior hierarchies when coding for

application. Keep in mind that the frameworks of superior hierarchies are capable of object-oriented

abstraction in their inferior counterparts. Abstraction relieves the developer from the complicated

coding requirements from sockets and threads recorded or encapsulated. Note that the technologies

unique to the frameworks of superior hierarchies are still available regardless of abstraction. It is the

developer’s option to use the frameworks of inferior hierarchies that are not available in the superior

hierarchies. Ensuring good understanding about the frameworks and class information would thus

help the developer make the best of iOS applications.

Refer to the following descriptions for the information of layers available, most notably being Cocoa

Touch Layer, Media Layer, Core Services Layer and Core OS Layer.

Cocoa Touch Layer

Applications mainly using graphics and events and requiring access to Contacts uses Cocoa Touch

Layer.

Framework Description

AddressBookUI.framework UI framework for editing address books

EventKitUI.framework Framework for verification and editing of calender data

GameKit.framework Framework for Game Center

iAd.framework Framework for iAd

MapKit.framework Framework for MapKit

MessageUI.framework UI framework for messaging

Twitter.framework Framework for Twitter

UIKit.framework UI Kit Framework

Media Layer

Media Layer provides a variety of frameworks for multimedia available for framework and mobile

devices.

Framework Description

AssetsLibrary.frame

work
Framework for photo albums

AudioToolbox.fram

ework
Framework for audio recording and play and format conversion

AudioUnit.framewo

rk
Framework for audio unit and devices

AVFoundation.fram

ework
Framework for audio / video recording, editing and play and audio sessions

CoreAudio.framewo

rk
Framework for data type, audio stream, complicated buffer and time values

CoreGraphics.frame

work
Framework for 2D rendering, gradient, image, color control and PDF documents

CoreImage.framewo

rk
Framework for image processing and video image configuration

CoreMIDI.framewor

k
Framework for hardware keyboard, synthesizer and MIDI devices

CoreText.framework Framework for font styles

CoreVideo.framewo

rk
Framework for low-level, pipe-line based API for movie and video works

GLKit.framework
Saves significant amount of time for development of OpenGL ES Framework for mathematics

library, rendering loop, etc.

ImageIO.framework Framework for reading, writing, color control and image metadata for image file types

MediaPlayer.framew

ork
Framework for music and video plays

OpenAL.framework Framework for quality performance and advanced audio quality

OpenGLES.framew

ork
Framework for 2D and 3D processing

QuartzCore.framew
Framework for advanced animation

ork

Core Services Layer

Application uses Core Services Layer to access the fundamental iOS services, files, low-level data,

Bonjour Service or network sockets. Core Services Layer is also preferred over Cocoa Touch Layer

and Media Layer for access to data.

Framework Description

Accounts.framework Framework for account accessibility information

AddressBook.framework Framework for contacts information

CFNetwork.framework Framework for network service access and network composition changes

CoreData.framework Framework for core data

CoreFoundation.framework Framework for basic system services

CoreLocation.framework Framework for compass and location information

CoreMedia.framework Framework for visual media

CoreMotion.framework Framework for gyroscope

CoreTelephony.framework Framework for core telephony

EventKit.framework Framework for calendar data

Foundation.framework Foundation framework for NS Object.

MobileCoreServices.framework Framework for access to standard types and constants

NewsstandKit.framework Framework for News Stand

QuickLook.framework Framework for Quick Look

StoreKit.framework Framework for In-app Purchase

SystemConfiguration.framework Framework for network availability and status

UIAutomation.framework

Core OS Layer

Core OS Layer administers virtual memory system, thread, file system and network communication.

Note that Core OS Layer contains kernel information, driver and iOS basic interfaces.

Framework Description

Accelerate.framework Framework for complicated mathematics and image calculations

CoreBluetooth.framework Framework for Bluetooth

ExternalAccessory.framework Framework for external accessories to iOS devices

Security.framework Framework for data security

System.framework System framework

Visit https://developer.apple.com/library/ios/navigation/#section=Frameworks for more details.

Libraries

Libraries is a series of complied files containing codes (functions or classes). Frequently used

functions can be referred in the form of libraries for easier maintenance and debugging, as well as

faster compilation. Without libraries, the developer must be bothered by modifying main codes every

time modification becomes necessary. With libraries, the time-consuming chores are no longer

necessary as all you need to do to modify main codes is to compile the concerned library(s) and link

to the concerned main function, saving a heap of time. Plus, iOS's dynamic library system boasts

its unique functions that are much advanced from the conventional static libraries.

However, the developer has a total of three options to determine which type of library is to be used,

depending on Loading Time Allowance: (Typical) Static Library, Shared Library and Dynamic

Library

Categ

ory
Description

Static

 libra

ry

A simple set of libraries concluded by an object file (.o). Features specific extension (.a). Boasts simplicity.

 Less flexible loading time is involved in the course of compilation. In recent days, less popular than other

 library options. Involves larger binary due to loading time.

Share

d Lib

rary

Involves loading time when the program is executed. Once created, library is shared over the course of exe

cution of program. Makes feasible flexible development. Does not involve loading time, contrary to static l

ibrary. Unfortunately, 1-5% latency compared to static library is unavoidable despite smaller volume of prog

ram. Latency typically left inappreciable, though.

D y n a

m i c

Librar

y

Loading takes place while the program is being executed. Best-fit for plug-in module, etc. Suitable for deve

lopment of the flexible application where the developer can choose the desired libraries to be executed.

iOS Runtime

Speed and security are keys to iOS runtime. Refer to the following paragraphs for how iOS runtime

environment can be described and is used most optimally:

• The User Interface

• Fast Launch, Short Use

• Specialized System Behaviors

• Security

• Use Memory Efficiently

• The File System

• Backup and Restore

• The Simulator

Visit About iOS App Programming for more information.

Unix Kernel

Being the very basis of iOS components, iOS Kernel very much resembles Unix Kernel. Designed for

multi-user security, UNIX Kernel was first developed when the developer entitled “Next” deployed

Unix Kernel Mach(Multiple Asynchronously Communication Hosts) OS with GUI, which is what OS

X is based upon. This OS X is also adopted by iOS.

With OS X Kernel commonly using Mach Kernel, (Apple TV, iPhone, Mac OS X, etc.) which has

Kernel Extension as its part. (USB Input and VPN are the Kexts that iPhone uses.) At the very bottom

of Mac OS X there is a Kernel, followed by BSD Unix of Mac OS X. In Unix, we use the term

‘userland’ to refer to the processes run outside the kernel. BSD Unix Userland in mackintosh

environment is not verifiable by the desktop users. (available when the console is open.)

Userland serves as a mediator between Application Program and Hardware. In Userland, a multitude

of application programs (processes and threads) engages in memory management and resource

distribution.

Visit Kernel Architecture Overview for more information.

References

Title Link

Apple Developer Library https://developer.apple.com/library/ios/navigation/

Apple Developer Library - Framework https://developer.apple.com/library/ios/navigation/#section=Frameworks

iOS Programming Guide About iOS App Programming

